303 Third Stóreet Cambridge, Massachusetts

Brian Tufts AE 481W – Thesis Advisor: Dr. Ali Memari Technical Assignment 2 October 26, 2007

TABLE OF CONTENTS

Executive Summary	3
Existing Structural System	5
Codes	6
Loads	7
Alternate System 1	9
Alternate System 2	10
Alternate System 3	11
Alternate System 4	12
Comparisons/Conclusions	14

Appendix	.16
----------	-----

EXECUTIVE SUMMARY

The purpose of this report is to research possible alternatives to the steel composite floor system of 303 Third Street. This is an eight-story, 485,000 square foot building project currently under construction in Cambridge, MA. This \$246 million building will contain primarily residential units with some retail space.

Existing System

The existing floor system is a 3-1/4" lightweight concrete slab on a 3" deep 16 gage metal composite deck and WWF 6x6 W2.1xW2.1 reinforcing. Supporting the slab are W12x16 composite beams which span 18'-1" N-S in a typical bay. The beams frame into composite girders on the interior which are typically W14x30 spanning E-W.

Alternative Systems:

When analyzing the alternative floor systems, criteria such as the overall weight of the system, vibration control, fire proofing, ease of construction and relative cost were considered. These alternative systems were then compared to the criteria performance of the existing floor system.

The following are the alternative floor systems considered:

- 1. Non-composite floor construction
- 2. Open web steel bar joists with thinner concrete deck.
- 3. 2-way flat slab with drop panels
- 4. Waffle slab

Conclusion:

The main factor taken into consideration in this report was to develop a system that will decrease the amount of lateral bracing elements needed. As designed, 303 Third Street requires exterior moment frames in addition to N-S concentrically braced frames with HSS shapes. Therefore the biggest factor considered was overall weight of each of the systems. Lowering the weight will decrease the seismic loads on the building, thus eliminating the need for the moment frames on the exterior of the building and turning it into a single lateral bracing system with concentrically braced frames. Reducing the cost of the building was also a major factor in comparing the systems. For this reason, I performed a cost per square foot analysis of the typical bay accounting for slab cost, members, and columns. This slimming down of the building weight does have its consequences however in the form of costs, less fire protection and vibration control. It is important to note that elimination of the exterior moment frames will result in the need to carefully investigate any torsional movements of the overall building framing. While this is out of the scope of this particular report, it will be investigated in more detail in Technical Report 3.

The 2-way flat slab and waffle slab systems are ideal for controlling vibration and perform well for fire ratings due to their large mass. However, it is because of their heavy weights that they are almost immediately eliminated as a good alternative compared to the existing system.

The steel bar joists on the other hand, have the advantage of being a less expensive (structural costs) and extremely light system. The downside to open web bar joists, especially with a thinner concrete slab is its vulnerability to vibration, which can be a major issue to ignore when designing an office environment, but not in a residential application such as 303 Third Street. Open web bar joists were found to be the best alternative floor system to eliminate weight, but still require adequate fire protection. In conclusion, the most viable system analyzed in this report is open web steel joists which I will evaluate more carefully in the future.

EXISTING STRUCTURAL SYSTEM

FOUNDATION:

The slab on grade concrete is normal weight (145 pcf dry unit weight) and has a minimum 28day strength of 3500 psi. The 5" slab on grade is reinforced with 6x6 W2.9xW2.9 welded wire fabric. Column loads are supported by square spread footings (f'c = 4000 psi) ranging from 5'-6" to 14'-0". The spread footing bear directly on the undisturbed, natural outwash sand, marine clay, or marine sand deposits proportioned utilizing a maximum bearing pressure of 2.5 tons per square-foot. The foundation also contains a few internal and external piers (f'c = 4000 psi) for supporting larger loads. The foundation bears on belled caissons with a typical depth of 20'. The caissons bear on 3 TSF bearing material. A groundwater cut-off at the perimeter is maintained as well as underdraining of the lowest level slab to avoid hydrostatic uplift forces acting on the lowest level slab. The continuous perimeter wall footings are founded at least 12 inches below the surface of the relatively impervious marine clay deposit to provide a groundwater cut-off. The surface of the bedrock deposit was observed to vary from 66.3 to 90 feet below the existing ground surface.

FLOOR SYSTEM:

The sublevel floor system P1 consists of a 4 $\frac{1}{2}$ " normal weight concrete (f'c = 5000 psi) slab on a 3" deep 18 gage composite metal floor deck reinforced with #5 rebar at 12" parallel to the deck and #4 rebar at 12" temp for a total slab thickness of 7 $\frac{1}{2}$ ". The slab is supported by steel beams with typical sizes ranging from W12 to W18. Wide flange beams typically span 25' with 8' spacing. Composite action is created by $\frac{3}{4}$ " diameter shear studs with $\frac{5}{2}$ " length. Girders are also wide flanges sized up to W24 with cambers over 1". The typical floor system throughout the rest of the building is 3 $\frac{1}{4}$ " light weight concrete slab on a 3" deep 16 gage composite metal floor deck reinforced with $\frac{6}{5}$ W2.1xW2.1 welded wire fabric. This slab is supported by steel beams with typical sizes ranging from W12 to W14. Wide flange beams typically span 18-26' with 12'-6" spacing.

COLUMNS:

The columns are ASTM A992 Grade 50 wide flange steel shapes laid out in a mostly rectangular grid. The columns act as the primary gravity resistance members. The columns that are attached as braced and moment frames are also the main lateral resistant force members. The braces between columns are ASTM A 500 Grade B HSS shapes ranging in size from 7x5x1/2" to 9x7x5/8". The largest column is a W14x159 and the smallest is a W12x53 on the ground floor.

The maximum unbraced length is 15' which is the floor to floor height of the ground floor. Column splices occur every 20' - 25' at 4'-0" above the floor.

LATERAL FRAMING:

There is a dual lateral system implemented consisting of concentrically braced steel frames in both the N-S and E-W directions and moment frames in the E-W direction. These frames consist of wide flange columns, wide flange beams at each story and two HSS (hollow structural section) diagonal braces between each story and may include moment connections depending on the frame type.

<u>CODES</u>

DESIGN CODES:

Building Code:	Massachusetts State Building Code – 6 th Edition
Reinforced Concrete:	American Concrete Institute (ACI) 318 – 1995 Edition
Reinforced Masonry:	American Concrete Institute (ACI) 530 – 2005 Edition
Structural Steel:	American Institute of Steel Construction (AISC) Load and Resistance Factor Design Specification for Structural Steel Buildings – Latest Edition
Metal Decking:	American Iron and Steel Institute (AISI) Specification for the Design of Cold Formed Structural Members
Building Design Loads:	Massachusetts State Building Code – 6 th Edition

THESIS SUBSTITUTED CODES:

American Society of Civil Engineering (ASCE) Minimum Design Loads for Buildings and Other Structures – ASCE 7-05

American Institute of Steel Construction (AISC)

Steel Construction Manual – 13th Edition – 2005

The International Building Code - 2006

LOADS

DEAD LOADS:

Metal Deck + Light Weight Concre Steel Beams	te	30 PSF Vulcraft Catalog AISC Values
Superimposed Dead Loads:		
Mechanical, Electrical, Sprinkler Ceiling Finishes Floor Finishes		20 PSF 5 PSF 5 PSF
LIVE LOADS:	Design Value	ASCE 7 Ch 4
Floor Live Loads:		
Corridors above 1 st floor First floor lobbies, public areas	80 PSF	100 PSF
and corridors	100 PSF	100 PSF
Assembly rooms	100 PSF	100 PSF
Residential	40 PSF + Partition	40 PSF
Retail	100 PSF	100 PSF
Exercise room	100 PSF	100 PSF
Slab on grade	100 PSF	N/A
Storage (light)	125 PSF	125 PSF
Loading dock slab on deck	250 PSF	250 PSF
Framed exterior at ground	100 PSF + Soil	N/A
Fire pump room	150 PSF	N/A
Stairs	100 PSF	100 PSF
Mechanical areas	150 PSF	N/A
Elevator machine room	150 PSF	N/A
Transformer vault	250 PSF	N/A
Parking levels and ramps	50 PSF	40 PSF
Roof Live Loads:		
Roof Live Loads		20 PSF min
Basic Uniform Snow Load (Pf)	30 PSF	

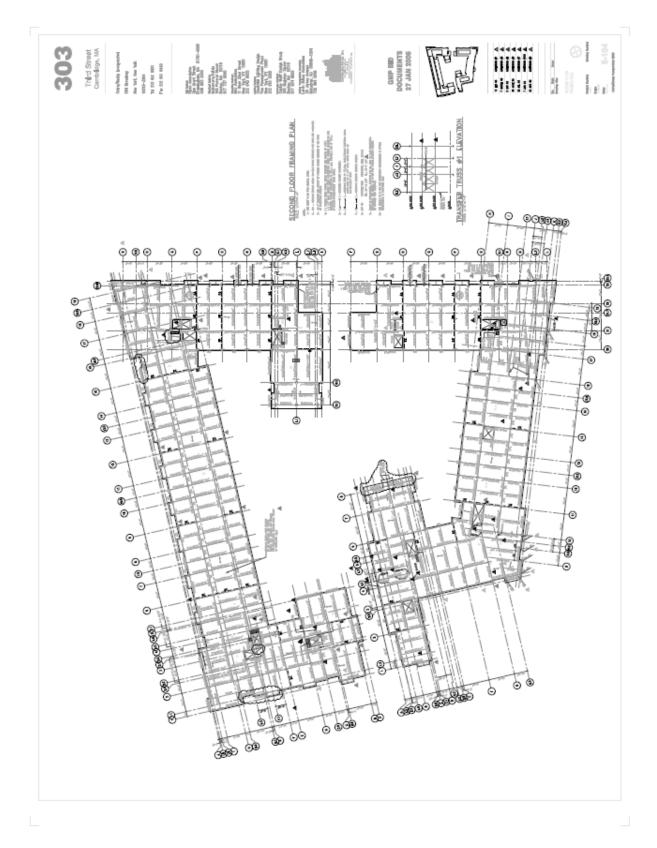


Figure 1: Existing Typical Framing Plan

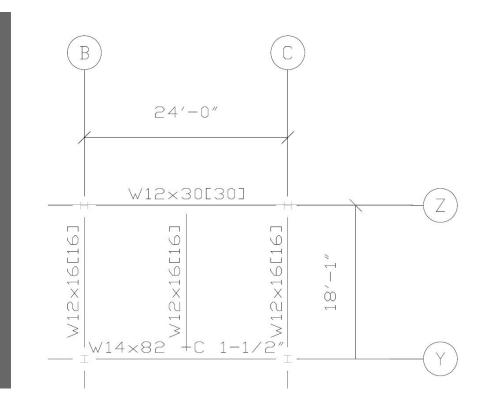


Figure 2: Composite Floor for Typical Bay

Alternative System 1: Non-Composite Floor System

Using RAM Structural System for the typical bay (see Figure 2), I designed a non-composite floor system for the typical bay. The result was predictable, shorter beam spans resulting in more mass and lower deflection values. The disadvantage to this system is that it is more costly due to the extra steel members in raw costs as well as in cost of construction for additional steel connections. Compared to the existing framing plan, the interior girder is slightly larger (W14x30 to W18x40) however the N-S spanning members are increased in number from 3 to 5 while remaining the same size (W12x16). The addition of more members will decrease deflection of the floor and reduce vibration; however it is a much more costly system than the composite system in place. The estimated cost per square foot of the typical bay using the RS Means 2008 catalog is \$24.60 per square foot (see Appendix for cost calculation). With the current lead time for steel being a driving factor in construction scheduling and the reasons stated above, I do not believe a non-composite floor system would be a good solution for this building.

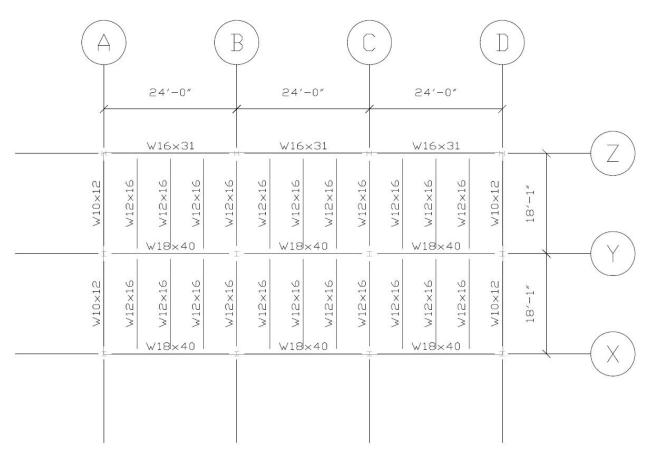


Figure 3: Composite Floor Design of Typical Bay

Alternative System 2: Open Web Steel Joists

From hand calculation, I determined 8 open web steel joists spaced at 24" on center spanning the E-W in the 24' dimension of the typical bay would be the best design. Using the Vulcraft Joist Catalog with my floor loads, I determined the most appropriate K-Series joist to be a 14K4 joist which weighs 6.7 pounds per linear foot of joist. After performing a deflection check on the bay, I determined deflection would not be an issue for this system. From the Vulcraft Deck Catalog, I selected a Type C 9/16" 24 Gage Galvanized form deck with non-composite action with a 3.25" lightweight concrete slab. The resulting load was slightly less than the original design, but not enough to significantly impact the original beams and column sizes. The primary concerns with using an open web steel joist system in any building relate to fireproofing and vibration. Since 303 Third Street is primarily a residential occupancy, I do not believe vibration will be as much of an issue as, say, an office building where there is constant movement. To maintain a 2 hour fire rating on the bar joists, often chicken wire is wrapped around them prior to spraying cementitious fireproofing. The estimated cost per square foot of the typical bay using the RS Means 2008 catalog is \$22.54 per square foot (see Appendix for cost calculation).

After this analysis, I believe open web steel joists to be an appropriate floor system for 303 Third Street. Existing bay sizes for the building are such that span length is not an issue. The bar joists also allow for more mechanical space between floors. Joists will also reduce the mass of the building, thus decreasing the seismic loads. Fireproofing of the joists is an issue that would need to be addressed prior to selecting this as the most viable floor system.

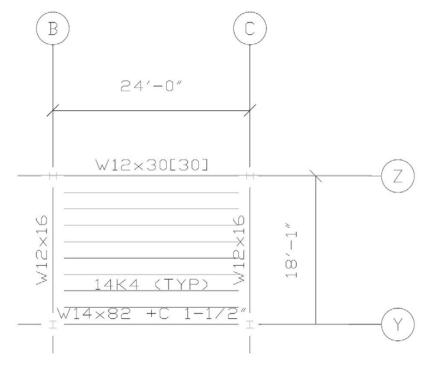


Figure 4: Open Web Steel Joist Typical Bay

Alternative System 3: Waffle Slab

The third alternative floor system to evaluate is the waffle slab. While waffle slabs are typically not chosen for residential occupancies, they are very durable, have excellent fire ratings, do not have vibration issues, and are suitable for the spans of the typical bay for this project. When designing with concrete, typically square bays are optimal. As the typical bay for 303 Third St is 18'-1" x 24' a new column grid would need to be designed, which would throw off the organization of residential units and corridor space. The new column grid would likely interrupt corridors and other open spaces as the architectural plans are laid out.

Using the CRSI Handbook, 30"x30" voids were chosen over 19"x19" because they provided the necessary capacity and use a little less material. The capacity needed was 170 psf superimposed, using the 1.4D+1.7L combination on which the table is based. The smallest system in the table capable of supporting this load at a 24' span has a 4 ½" slab and 6" ribs. See Appendix for reinforcement. Since the table values are to limit deflections in a square bay, the reinforcement and concrete will probably be a little conservative. Also, the slab will need to be changed to 5" in

order to achieve the desired 2-hour fire rating. The estimated cost per square foot of the typical bay using the RS Means 2008 catalog is \$30.46. per square foot (see Appendix for cost calculation).

Another major drawback to this system is the weight. Obviously, a concrete waffle slab system will increase the weight of the system drastically from the original composite design. This will cause increased seismic loads, and since the foundation quality of the soils in urban Cambridge, MA are suspect at best (Site Class E), the substitution of a massive waffle slab system will likely cause headaches for the foundation design as well as in the design of the lateral bracing system.

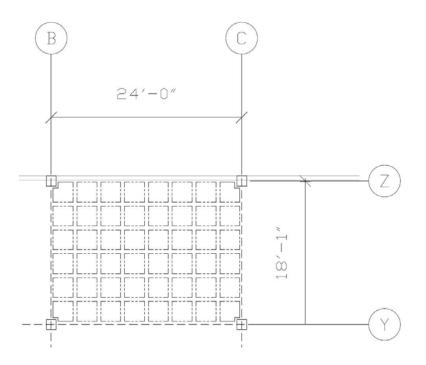


Figure 5: Waffle Slab for Typical Bay

Alternative System 4: 2-Way Flat Slab with Drop Panels

The fourth alternative floor system to evaluate is the two way flat slab with drop panels. Two way flat slabs are very durable, have excellent fire ratings, do not have vibration issues, and are suitable for the spans of the typical bay for this project. As stated before, when designing with concrete, typically square bays are optimal. As the typical bay for 303 Third St is 18'-1" x 24' a new column grid would need to be designed, which would throw off the organization of residential units and corridor space. The new column grid would likely interrupt corridors and other open spaces as the architectural plans are laid out.

Using the CRSI Handbook, h=8.5" total slab depth between panels was chosen with 8' square drop panels. The capacity needed was 170 psf superimposed, using the 1.4D+1.7L combination on which the table is based. The smallest system in the table capable of supporting this load at a 24' span has a drop panels 8' square with a depth of 7". See Appendix for reinforcement. Since the table values are to limit deflections in a square bay, the reinforcement and concrete will probably be a little conservative. Also, the slab thickness (8.5") is sufficient for fire rating. The estimated cost per square foot of the typical bay using the RS Means 2008 catalog is \$31.36 per square foot (see Appendix for cost calculation).

Another major drawback to this system is the weight. Obviously, a concrete system will increase the weight of the system drastically from the original composite design. This will cause increased seismic loads, and since the foundation quality of the soils in urban Cambridge, MA is suspect at best (Site Class E), the substitution of a two way flat slab system is not likely.

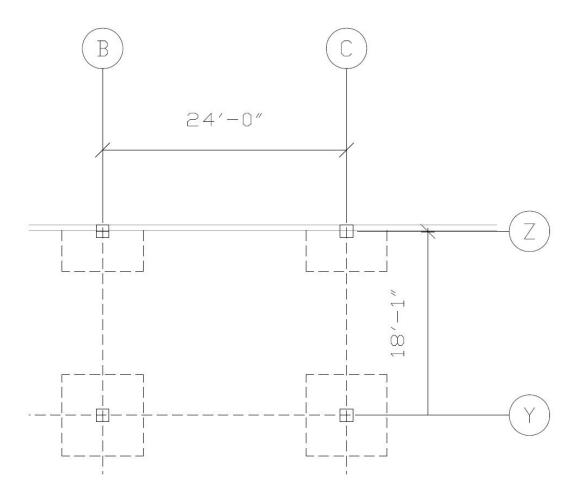


Figure 6: 2-Way Flat Slab for Typical Bay

Summary and Conclusions

ALTERNATIVE SYSTEM COMPARISON:

The results of the alternative floor system analysis and preliminary design for 303 Third Street are shown in the comparison chart that follows (Figure 7).

		Non-			
Criteria 💽	Composite 💌	Composite 💌	Steel Joist 💽	Waffle Slab 🛛 💽	2-Way Flat Slab 💌
Cost/SF	\$27.25	\$24.60	\$22.54	\$30.46	\$31.36
Fireproofing	Spray On	Spray On	Special Detail	None Extra Reqd	None Extra Reqd
Constructability	Medium	Medium	Easy	Labor Intensive	Relatively Easy
Deflection Issues	None	None	None	None	None
Vibration			Below		
Resistance	Average	Average	Average	Above Average	Above Average
Slab Width	6.25"	6.25"	6.25"	5"	8.5"
Total Depth	20.25"	20.25"	20.25"	12.5"	15.5" (Incl Drops)
Weight relative to		Slightly	Slightly		
Orig Design	As Designed	Heavier	Lighter	Heavier	Much Heavier
Durability Issues	Steel Fatigue	Steel Fatigue	Steel Fatigue	Concrete Spalling	Concrete Spalling
Column Grid					
Changes	No	No	No	Yes	Yes
Lateral System					
Effects	No	No	Minor	Yes	Yes
Viable Solution?	Yes	Yes	Yes	No	No

Figure 7: Alternative System Comparison Chart

CONCLUSION:

All four systems analyzed in this report would in fact work for 303 Third Street given the right circumstances and requirements. The main criterion which resulted in the largest effect was the weight of each system. Given the condition of the soil in Cambridge, MA, reducing seismic shear by decreasing weight could reduce the overall cost of the building by decreasing the amount of lateral bracing necessary. The existing system of composite W shapes, and concrete on composite metal deck already requires the use of moment frames on the exterior of the building in conjunction with braced frames in the N-S direction with HSS bracing elements system. Thus, any system that produces substantially higher dead weights was immediately recognized as at a disadvantage and quickly eliminated from the list of viable alternatives.

The 2-way flat slab does have the advantage of thinner floors and ease of constructability with no need for additional fire protection. However the addition of columns to create larger, square bays creates the need for retrofitting the foundation as well as reorganizing the architectural layout of the spaces. This in addition to the heavy weight of the 2-way flat slab eliminates it as an option.

The waffle slab also has the advantage of thinner floors, no additional fireproofing, and great durability. However, like the 2-way flat slab, the column grid would need to be altered to create square bays, which causes issues with the spacial arrangement of the building and the foundation plan already designed. The increased weight of the concrete system would also be of special concern. Waffle slabs are also labor intensive as they require special forms and shoring. For these reasons, the waffle slab was eliminated as a viable option.

The non-composite floor system performs similarly to the designed composite floor, however, more structural steel members of smaller size are needed to decrease spans. I do not believe the relatively small cost savings over the composite system (\$27.25 vs \$24.60) justifies the extra connections that would be necessary in connecting 3 extra steel members per bay.

One alternative system that is extremely light is the open web joist system. The substantial decrease in dead weight of the system makes the open web joists ideal for the goal of decreasing lateral bracing. One of the main reasons open web steel joists are often eliminated is due to the susceptibility of vibration in such a system. Since 303 Third Street is primarily residential units, I do not believe vibration to of serious concern as it would be in an office building. Along with resistance to vibration is the disadvantage of fireproofing. Spray on fireproofing for open web joists is not only costly but difficult to do. Given the bay dimensions as designed, the short spans allow for a 14" deep K-Series joist, which does not cause any issues in the interstitial space between floors for mechanical equipment, as 14" deep members were used in the existing composite design. Open web steel joists certainly have potential for a more in depth investigation as a viable candidate floor system.

<u>APPENDIX</u>

psi	s			Top	nterior No size	in.	5-#5 5-#5 5-#5 5-#5 5-#5 5-#5	0-#2 6-#5 6-#5 6-#5 6-#5 6-#5 6-#5 6-#5 6-#5	7-#5 7-#5 7-#5 7-#5 7-#5	8-#5 8-#5 8-#5 8-#5	9-#5 9-#5 10-#5 12-#5	10-#5 10-#5 13-#5																																				
10	Dars	5	lle Strin		Short	h = 41/2	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 <u>24</u> 24 25 25 25 25 25 25 25 25 25 25 25 25 25	8 2223888	<u></u> * * * * * * * * * * * * *	#4 #6 #6	業 売売	-																																			
4,0	S S	Direction	Middle	Bottom	Long	b Depth	* * * * * * * *	**************************************	8 332555	装装装装装	#####	52 #2 22 #2	-																																			
f' = '	PANEL	Each			No. Ribs	Total Slab	~~~~~~		20 444444	ຄາຍອາຍອາຍາຍ	ດເດເດ	000	1																																			
	- 0			Top	Interior No size	P [₽]	13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	15-45 15-45 15-45 15-45 15-45 15-45 15-45	13-#5 18-#5 18-#5 18-#5 18-#5 20-#6	20-#5 20-#5 21-#5 25-#5 23-#6	22-#5 23-#5 21-#6 25-#6	25-#5 23-#6 28-#6																																				
	EINTERIOR		Column Strip	Bottom	Bars per Rib	b Depth = 8 in.	2-#4 2-#4 2-#4 2-#4 2-#4 2-#5 1-#5 and 1-#6 2-#5	2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#5 and 1-#6	2-#4 2-#4 2-#4 2-#5 1-#6 and 1-#6 1-#6 and 1-#7 2-#7	1-#4 and 1-#5 2-#5 2-#6 2-#6 1-#6 and 1-#7 1-#7 and 1-#8	1-#4 and 1-#5 1-#5 and 1-#6 2-#7 2-#7	1-#5 and 1-#6 2-#6 2-#7																																				
	SQUARE				No. Ribs	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	> যেয়য্ব্যুৰ্	444444	44444	ດາດາດາ	ى مى مى																																				
	sou		Interior Column	Yor	Stirrups	: 12½ in.	0 0 0 0 0 0 0 0 0 0 4 1 1 4 1 1 4 1	3 S S 4 1	4444	3541 3541 3541 3542	3541 3541 3541	3541 3541 3541																																				
			Inter		$\begin{array}{c} \mathbb{C}_1 \equiv \mathbb{C}_2 \\ (\text{in.}) \end{array}$	Depth =	55555555 *	5555555 * * *	12: 12: 12: 12: 12: 12: 12: 12: 12: 12:	133 133 133 133 133	15 * 15 * * 5 15	16 * 16 *																																				
0 36				(1)	Steel (psf)	Total [1.84 1.84 1.84 1.84 2.05 2.28 2.28 2.53	1.82 2.33 2.73 2.73 2.73 2.73 2.73 2.73 2.7	1.86 2.25 3.64	1.94 2.02 2.38 2.284 3.74	1.94 2.28 3.50	2.16 3.36 3.36																																				
0) S (0)			52	M-	lint. (ft-k)		81 127 150 195 241 286 286	171 171 207 244 391 391	200 311 569 569	284 363 518 518 658	393 501 708	520 663 794																																				
Ribs			Moments		+M Bot. (ft-k)		60 107 134 187 239 289	99 177 306 389 389	149 193 264 330 546 546	211 270 368 458 590	292 372 604	386 608 608																																				
s: 6"			4	M	-M Edge (ft-k)		30 39 72 89 106	50 91 118 145	74 95 116 136 176 212	105 135 164 192 244	146 225 263	193 246 295																																				
Voids		uo			Top			5-35 5-35 5-35 5-35 5-35 5-35 5-35 5-35	6-#5 6-#5 6-#5 6-#5 7-#5 7-#5	7-#5 7-#5 7-#5 8-#5 8-#5 7-#5 7-#5	8-#5 8-#5 9-#5 8-#6 8-#6	9-#5 9-#5 10-#5	10-#5 11-#5 10-#6																																			
2			Middle Strip		Short Bars		1000 1000 1000 1000 1000 1000 1000 100	#15 #15 #16 #16	<u> </u>	## # # # # # # # # # # # # # # # # # #	#5 #5 #16 11	#6 11																																				
X 30		Directi	Midd	Battom	Bars E		######################################	#4 #5 #5 #7	## \$\$ \$\$ \$\$ #	#5 #5 #6	# 99.9	\$\$ \$\$ \$ 9																																				
=		-Each Direction			No. Ribs				44444	ດດດາດດ	ດາດາດາດ	000																																				
/ 30		Bars		Top	No size		13-#5 13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	15-#5 15-#5 15-#5 15-#5 16-#5 14-#6 23-#5	18-#5 18-#5 18-#5 17-#6 17-#6 16-#7	20-#5 20-#5 19-#6 18-#7	22-#5 25-#5 22-#6 20-#7	26-#5 24-#6 22-#7																																				
SYSTEM	PANELS	Reinforcing	Column Strip	Bottom Bars per Rib	Bars per		2-#4 2-#4 1-#4 and 1-#5 2-#5 1-#6 and 1-#7 1-#7 and 1-#8	2-#4 2-#4 2-#5 1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#8	1-#4 and 1-#5 2-#5 2-#6 2-#7 2-#9 2-#9	1-#5 and 1-#6 2-#6 2-#7 2-#8 2-#9	1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#9	1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#9																																				
AB	DGE		Co		Ribs.		, , , , , , , , , , , , , , , , , , ,	444444	44444	ৰৰ্ম্যয	ດດດດ	പറവ																																				
AT SL	Ш						Top Edge No	No size +	= 41/2	13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0	15-#5+0 15-#5+0 15-#5+0 15-#5+0 15-#5+1 15-#5+1 15-#5+1	$\begin{array}{c} 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 0\\ 18-\#5+ \ 1\\ 18-\#5+ \ 0\\ 18-\#5+ \ 2\\ 18-\#5+ \ 2\end{array}$	20-#5+ 0 20-#5+ 1 20-#5+ 1 20-#5+ 0 20-#5+ 0 20-#5+ 1	22-#5+1 22-#5+5 22-#5+8 22-#5+4	\$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$																																	
EFLA	SQUAR		Column	(2)	Stirrups	Slab Depth	3 S 4 1																																									
WAFFL			Square Edge C		A	Total	0.688 0.713 0.737 0.751 0.858 0.858 0.858	0.759 0.787 0.816 0.844 0.906 0.623 0.623	0.823 0.854 0.855 0.921 0.626 0.626	0.847 0.889 0.931 0.623 0.623	0.861 0.917 0.933 0.624	0.900 0.937 0.622																																				
M			Squar		(in.)	H		55555555 * * *	122.	20113	20 * 20 *	117 * 0																																				
							(1) Steel (psf) Depth		ed (1) ed Steel (psf)		(1) Steel (psf) Depth:																	= http://	1.86	lepth =	epth = (epth = 1	epth =	epth = {	epth = 1	epth = {	1 AR	epth = 5	epth = 8	epth = δ	11-		1.84 1.84 2.201 3.30 3.30 3.31 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.8	1.92 2.32 2.64 3.44 1.19 3.44 1.19 1.41 1.41 1.41 1.41	2206 1 2265 1 3266 1 4.10 20	2.12 2.53 3.19 3.19 3.388 20	2.45 16 2.99 17 3.71 23	
			Super- posed Super- posed S (psf) (j			Super- Super- Posed S (psf) ((Rib D			500 500 500 500 500 500 500 500 500 500	400 200 150 00 300 200 150 00 400 300 10 10 10 10 10 10 10 10 10 10 10 10 1	300011000	2000 22 2000 33 2000 33	1000 22 23	ge 11-19.																											
				Columns $\mu_{*} = \rho_{2}$		12% In.	D= 6.500 RIB ON COLUMN LINE 0.648 CF/SF	211-0" D= 9.500 RB NOT ON COLUMM LINE 0.680 CF/SF	24'- 0" D= 9.500 RIB NOT ON COLUMN TIME 0.661 CF/SF	27"- 0" D= 9.500 RIB MOT ON COLUMN LINE 0.648 CF/SF	30°- 0" D=12.500 RIB 0N 0.670 CF/SF	33"- 0" D=12.500 RIB ON COLUMN LINE 0.658 CF/SF	See the notes on Page 11-19.																																			

		Concrete	sq. ft	NELS	0.745 0.745 0.759 0.773 0.822	0.745 0.759 0.773 0.802 0.822	0.759 0.773 0.773 0.822	0.759 0.773 0.773 0.787 0.822		
Ш	(.W		Steel (psf)	DROP PANELS	1.94 2.31 2.71 3.16 3.84	2.01 2.33 3.35 4.09	2.09 2.38 3.22 3.76	2.12 2.65 3.43 4.32	-	
R PAN		Strip	Bottom	NEEN D	11-#4 11-#4 8-#5 14-#4 12-#5	11-#4 11-#4 9-#5 16-#4 13-#5	12-#4 12-#4 10-#5 12-#5	12-#4 9-#5 12-#5 10-#6		
SQUARE INTERIOR PANEL With Drop Panels ⁽²⁾ No Beams	NG BA	Middle Strip	Top	TH BET	11-#4 11-#4 9-#5 8-#6 13-#5	12-#4 13-#4 16-#4 19-#4 15-#5	13-#4 14-#4 12-#5 22-#4	13-#4 16-#4 10-#6 9-#7		
With Drop Panels ⁽²⁾ No Beams	REINFORCING BARS (E.	Strip	Bottom	SLAB DEPTH BETWEEN	11-#4 9-#5 18-#4 14-#5 13-#6	12-#4 16-#4 21-#4 16-#5 20-#5	9-#5 18-#4 11-#6 10-#7	10-#5 21-#4 18-#5 9-#8		
With	REIN	Column Strip	Top	TOTAL SL	16-#4 14-#5 15-#5 16-#5 17-#5	12-#5 14-#5 11-#6 28-#4 14-#6	12-#5 14-#5 18-#5 14-#6	13-#5 16-#5 18-#5 12-#7		
SQI	(E)	Column	Size (in.)	II L	12 21 21 22	23 20 11 23 23 20 12 23 23 23 20 23 23 20 23 23 20 23 23 20 23 23 20 23 23 20 23 23 20 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	12 20 23 23	12 18 20 23	-	
	Factored	-mineduc	(psf)	h = 8.5	100 200 300 500	100 200 400 500	100 200 400	100 200 400	-	
		12.6	(l) (l)		213.0 288.4 363.6 441.1 517.8	244.4 332.1 418.9 504.2 593.8	279.6 378.7 478.9 578.2	317.2 430.1 545.2 655.3		
	MOMENTS	Bot.	(+) (±+)		158.2 214.2 270.1 327.7 415.9	181.5 246.7 311.2 374.5 451.7	207.7 281.3 355.7 429.5	235.6 319.5 405.0 486.8		
Panels	Ŵ	Edge	(l) (h-k)		79.1 107.1 135.1 163.8 192.3	90.8 123.3 155.6 187.3 220.6	103.9 140.6 177.9 214.8	117.8 159.8 202.5 243.4		
SIEM With Drop Panels		Total	Steel (psf)	S	2.01 2.57 3.08 3.70 4.67	2.13 2.64 3.40 4.00 4.83	2.27 2.80 3.71 4.43	2.34 3.11 4.08 5.01		
55	(E. W.)	Middle Strip	Top Int.	DEPTH BETWEEN DROP PANELS	11-#4 8-#5 10-#5 12-#5 10-#6	12-#4 9-#5 17-#4 10-#6 16-#5	13-#4 10-#5 13-#5 16-#5	13-#4 12-#5 15-#5 10-#7		
Bea B	REINFORCING BARS	Middl	Bottom	IN DROF	10-#4 9-#5 12-#5 14-#5 8-#8	12-#4 16-#4 10-#6 9-#7 20-#5	9-#5 12-#5 11-#6 10-#7	10-#5 10-#6 10-#7 9-#8		
FLAT SLAB SQUARE EDGE PANEL No Bee	RCING		In Top	BETWEE	11-#5 15-#5 25-#4 18-#5 14-#6	19-#4 15-#5 12-#6 20-#5 12-#7	19-#4 15-#5 14-#6 15-#6	14-#5 12-#6 14-#6 13-#7		
	REINFO	Column Strip (1)	Bottom	DEPTH	10-#5 10-#6 9-#8 12-#8	18-#4 16-#5 11-#7 18-#6 13-#8	21-#4 19-#5 17-#6 16-#7	23-#4 15-#6 15-#7 14-#8		
UARE	ш	0.000	Top Ext. +	= TOTAL SLAB	11-#4 1 11-#4 4 12-#4 2 13-#4 2 13-#4 1	12-#4 4 12-#4 4 13-#4 5 15-#4 5 16-#4 3	13-#4 2 13-#4 3 15-#4 4 16-#4 2	13-#4 4 13-#4 4 15-#4 3 18-#4 5		
SQ		umnio	γf		0.676 0.746 0.638 0.629 0.629 0.629	0.786 0.697 0.630 0.738 0.738 0.658	0.706 0.633 0.722 0.630	0.766 0.686 0.643 0.723		
	(3)	square column	Size (in.)	= 8.5 in.	20 20 20 20 20	20 1 1 1 2 2 0 2 1 2 2 0 2 1 2 2 0 2 1 2 2 2 2	12 17 19	15 17 20		
a a	Drop	7	4	7.33 7.33 7.33 7.33 8.80	7.67 7.67 7.67 9.20 9.20	8.00 8.00 9.60	8.33 8.33 8.33 10.00			
f _c = 4,000 psi Grade 60 Bars	280-	12112	(in.)		4.00 4.00 5.50 7.00 8.50	4.00 5.50 7.00 8.50	5.50 7.00 7.00 8.50	5.50 7.00 8.50 8.50		
= 4,0 ade 60	Factored Superim-	pesod	(bst)		100 200 400 500	100 200 300 500	100 200 300 400	100 200 300 400	,	
f. Gra	SPAN	CC.	e1-e2 (ft)		222222	53 53 53 53 53 53 53	24 24 24 24	- 25 25 25 25		
		,		-		CONCRETE RE	INFORCING	STEEL INS	STITUTE	10-1

CLASS: DATE: ASSIGNMENT: PAGE: of PENN STATE UNIVERSITY JOIST PESIGN 241 × 18'-1" - JOISTS SPAN LONG DIKECTION - MAX SPACING = 2,5' 18.0833' = 7.23 -> USE 8 JOISTS 18:0833 = 1.81' SPACING 10 LL = 100 PSF DL = 50 PSF TL = 150 PSF 1.8' TRINS => DL = 181 DL = 90.5 TL = 271.5 PLF 241 SPAN 241 SPAN K MEMBERS 12K5 (7.1 PLF) 282K 14K4 (6.7 PLF) 295K K USE THIS ONE LIGHT AND DEPTH 14K5 (7.7 PLF) 362K WILL NOT CAUSE MEP ISSUES WITH ORIGINAL DESIGN 14K5 (7.7 PLF) 362K 16K3 (6.3 PLF) 283K CHECK DEFLECTION Ts = 26.767 (295) (24'-0.33) (10-6) = 104.72 int 5 (181)(24)⁴(1728) = 0.44" < 2 = 0.3" Vok 334 29000(104.72) = 0.44" < 360 = 0.3" Vok A= TYPE C NON-COMPOSITE DECK USE TYPE C 9/16" ZH GAGE GALVANIZED DECKING 2 SPAN TL = 342 > 150 PSF VOK USING HIGHER GAGE DECK FOR SERVILIBILITY REASONS

AP	CLASS: DATE: ASSIGNMENT:
PENN STATE UNIVERSITY	PAGE: of
NON COMPOSITE DESIGN	16 20 24 2s
$PL = 50 \pm 20 = 70 \text{ psr}$ LL = 100 psr = 00005.	E 6' BEAM SPACING
DECK TYPE 2" CFORM	A 3 SPAN CONDITION ZO GA
TL = 173 >	170 RSF YOK
RAM SUMMARY :	
4 WIZXIG BEAMS & G' ZI WIZXIG EXT BEAMS 1 WIGK31. EXT GIRDER	
1 WIBKING INT GIRDER 4 WIOX33 COLUMNS	
SEE FIGURE	

WHERE AND COST ADDRIVES
CAST - NJ - PLACE CONCRETE.
0.661 CF/SE > 01661 (174) = 286.9 CF CONX
18-1" × 24' = 434 5F 286.9 (F)
$$(\frac{1}{244})^3 = 10.63 CY$$

MALK UP CY 87 10% FOR CONSTRUCTION WASTE
1. 11.7 CY OF CONX
FLOM KSMEANS, WHERE, 50° DOMES, 20'SPAN. 4770/CY
COST = 11.7 (170) = $\frac{1}{9009}$
FORMS IN PLACE, ELEVATED SLACE
FLOM KSMEANS, WHERE, 50° DOMES, 20'SPAN. 4770/CY
COST = 11.7 (170) = $\frac{1}{9009}$
FORMS IN PLACE, ELEVATED SLACE
FLOM KSMEANS, WHERE, 50° DOMES, 20'SPAN. 4770/CY
COST = 11.7 (170) = $\frac{1}{9009}$
FORMS IN PLACE, ELEVATED SLACE
FLOM KSMEANS, NUMPLE, 50° DOMES, 20'SPAN. 4770/CY
COST = 11.7 (170) = $\frac{1}{9009}$
FORMS IN PLACE, ELEVATED SLACE
FLOM KSMEANS, 105E CLOBEST TO WARTLE COM
413.50 / SECA
10 Z'H Z'
COLUMNDS (4) 12'X1Z''
COL

$$S_{1}$$

$$Mode - confect the cost ANALYSIS
Might Si (24') = 4/8/6 (24') = $\frac{6}{152}$
(3) with $with (18'-1'') = \frac{6}{16}\frac{1}{16}(24') = \frac{6}{1164}$
(3) with $with (18'-1'') = \frac{6}{16}\frac{1}{16}(24') = \frac{6}{1164}$
(4) $with (18'-1'') = \frac{6}{16}\frac{1}{16}(24') = \frac{6}{1164}$
(5) with $with (13'+1') = \frac{6}{16}\frac{1}{16}(24') = \frac{6}{1164}(24') = \frac{6}{1164}(24') = \frac{6}{1164}(24') = \frac{6}{16}\frac{1}{16}(24')$
(4) $with (13'+1') = \frac{1}{16}\frac{1}{16}(25) = \frac{6}{16}(24') = \frac{6}{16}\frac{1}{16}(24') = \frac{6}{16}\frac{1}{16}\frac{1}{16}(24') = \frac{6}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}(24') = \frac{6}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16}\frac{1}{16$$$

STEEL JOIST COST ANALYSIS (8) 14K5 JOISTS = 5 (40,5/LF)(24) = \$1236 W16×31 = \$1152 W18×40 = \$1464 W12×16 = \$479,2 W12×16=3479.2 CAST - IN - PLACE CONC CAMPAD COST (FROM PREV) = \$1262,94 DECK \$2,2/3F (434) = \$954,8 WHIF (FROM PREV) 264,74 COLUMNS (FROM PREV) = = = = 2620 TOTAL COST = \$9912,88 COST/SE = \$ 22.84/SE

AS DESIGNED (COMPOSITE) COST ANALYSIS KEANS WIZX30 = \$46.50/LF (24') = \$1116 (3) WIZX16 = \$36/LF. (18'-1") (3) = \$ 1952.96 WAX82 = \$128/LF (24') = \$3072 COLUMNES (1) (4) WI4×61 = \$104/2= (10)(4) = \$4160 CAMPAD CAST-IN-PLACE CONC + WWF \$ 1262,94+ \$ 264,74 & FROM PREV TOTAL COST = \$11828,64 COST /SF = \$27.25